
12/19/22, 5:35 PM evaluate() PostgreSQL Function for Evaluating Stored Expressions (Part 1) | by Christoph Bussler | Dec, 2022 | Medium

https://chbussler.medium.com/evaluate-postgresql-function-for-evaluating-stored-expressions-1846a19943e9 1/6

evaluate() PostgreSQL Function for Evaluating
Stored Expressions (Part 1)
Standing on the shoulders of database giants

Query predicates as data
I am working on a use case where a SQL query predicate (used in a WHERE clause) is stored

in a table column as text. This predicate is used in SQL queries when selecting JSON objects
from tables.

A good example is customers shopping for cars. For each customer their interest is stored
as a predicate. If a new car arrives then the interest of each customer is checked by querying
for each user the cars the user is interested in by the users’ stored predicate (aka, the
interest).

Cars are represented as JSON objects and stored in a table car . For example:

{

 "make": "Koenigsegg",
 "model": "CC850",

 "color": "silver",
 "horsepower": 1385,

 "price": 3650000

}

The car table has two columns (and two example rows here):

| car_id (int) | new_car (jsonb) |

+--------------+------------------------+

| 1 | { |
| | "make": "Koenigsegg", |

| | "model": "CC850", |
| | "color": "silver", |

| | "horsepower": 1385, |
| | "price": 3650000 |

12/19/22, 5:35 PM evaluate() PostgreSQL Function for Evaluating Stored Expressions (Part 1) | by Christoph Bussler | Dec, 2022 | Medium

https://chbussler.medium.com/evaluate-postgresql-function-for-evaluating-stored-expressions-1846a19943e9 2/6

| | } |

+--------------+------------------------+
| 2 | { |

| | "make": "Honda", |
| | "model": "Jazz", |

| | "color": "silver", |

| | "horsepower": 0, |
| | "price": 21394 |

| | } |
+--------------+------------------------+

Customers are stored in a customer table (with two example rows):

| customer_id | name | interest |

| (int) | (varchar) | (varchar) |
+-------------+-----------+--------------------------------+

| 100 | A | object -> 'horsepower' > 1000 |

+-------------+-----------+--------------------------------+
| 101 | B | object -> 'price' < 100000 and |

| | | object ->> 'color' = 'silver' |
+-------------+-----------+--------------------------------+

The goal is to be able to write a query that returns all customer identifiers that have interest
in a new car and the corresponding car identifiers. In the example above, if the car as
outlined in the JSON object arrives, customer 100 has interest in car 1 , and

customer 101 in car 2 .

Note: PostgreSQL has two operators for retrieving properties, -> and -

>> (https://www.postgresql.org/docs/current/functions-json.html). The former

returns jsonb and the latter text . This means that the expressions must including type

casting as required by operators. Above shown predicates would not work, but have to be
specified instead as follows:

| customer_id | name | interest |

| (int) | (varchar) | (varchar) |
+-------------+----------------+----------------------------------+

https://www.postgresql.org/docs/current/functions-json.html

12/19/22, 5:35 PM evaluate() PostgreSQL Function for Evaluating Stored Expressions (Part 1) | by Christoph Bussler | Dec, 2022 | Medium

https://chbussler.medium.com/evaluate-postgresql-function-for-evaluating-stored-expressions-1846a19943e9 3/6

| 100 | A | (object -> 'horsepower')::int > 1000 |

+-------------+----------------+----------------------------------+
| 101 | B | (object -> 'price')::int < 100000 and |

| | | object ->> 'color' = 'silver' |
+-------------------+----------------+----------------------------+

Evaluate() function
When searching for a solution on the Web I came across the paper referenced in [1]. It
describes an evaluate() operator implementation proposal as part of SQL in context of the

Oracle database system. Furthermore, it discusses how a database system can be extended
to recognize expression as column type, and to provide indexes into stored expressions for
optimization.

In my case I cannot change the implementation of the database system PostgreSQL
efficiently, so I asked the question: could I implement an evaluate() function instead?

Clearly, this approach of implementing a function is not the full featured support as
outlined in [1], however, it would be sufficient for my use case.

The functions signature is:

evaluate(object jsonb, expression varchar) returns boolean;

The function returns TRUE if the expression evaluates to TRUE for the JSON object,

and FALSE otherwise.

The query that returns all customers interested in new cars is then specified as follows:

select cust.customer_id,
 car.car_id

from customer cust,

 car car
where evaluate(car.new_car, cust.interest);

Implementation

12/19/22, 5:35 PM evaluate() PostgreSQL Function for Evaluating Stored Expressions (Part 1) | by Christoph Bussler | Dec, 2022 | Medium

https://chbussler.medium.com/evaluate-postgresql-function-for-evaluating-stored-expressions-1846a19943e9 4/6

The following shows an implementation of the evaluate() function:

CREATE OR REPLACE FUNCTION evaluate(

 p_object JSONB,
 p_expression VARCHAR

)
 RETURNS BOOLEAN

 LANGUAGE plpgsql

AS
 -- Expression evaluation on object

 -- (a) execute the expression on object of type JSONB
 -- (b) return TRUE if the expression evaluates to true

 -- (c) return FALSE if the expression evaluates to false
$$

DECLARE

 v_result BOOLEAN;
BEGIN

 EXECUTE format('SELECT'
 || ' CASE'

 || ' WHEN (SELECT count(*)'

 || ' FROM (SELECT $1 AS object) temp'
 || ' WHERE ('

 || $2
 || ')) = 1 THEN TRUE'

 || ' ELSE FALSE'

 || ' END')
 USING p_object::JSONB, p_expression::TEXT

 INTO v_result;
 RETURN v_result;

END;

$$;

COMMENT ON FUNCTION evaluate(
 p_object JSONB,

 p_expression VARCHAR)

 IS 'Function to evaluate an expression on an JSON object';

Parameters start with p_ and local variables with v_ . (I’d be interested in any

improvement you might be able to suggest, please ping me in that case.)

The execution result of the above query is:

12/19/22, 5:35 PM evaluate() PostgreSQL Function for Evaluating Stored Expressions (Part 1) | by Christoph Bussler | Dec, 2022 | Medium

https://chbussler.medium.com/evaluate-postgresql-function-for-evaluating-stored-expressions-1846a19943e9 5/6

| customer_id | car_id |

+-------------+--------+
| 100 | 1 |

+-------------+--------+

| 101 | 2 |
+-------------+--------+

Improvements
Above description illustrates a use case using evaluate() from a functional perspective. In a

production implementation additional work is required to implement a dependable system:

In the example JSON objects are stored. It is advisable to ensure those being compliant
to a JSON schema at least containing the properties referred to by the interests (or
those that could be referred to). This ensures that all properties are present as required
by the expressions stating the customer’s interest. If the interest refers to a property
that is not present, evaluate() returns FALSE .

The interest is an expression, however, its column is of type varchar . This means that a

syntactically incorrect expression can be stored in the column representing the interest.
An incorrect syntactic expression will result in a runtime error thrown by the database.
Therefore it is advisable to check the correctness of expressions before them being
inserted or updated.

Summary
The function evaluate() is a straight-forward approach for executing stored expressions. It

is great to stand on shoulders of giants in [1] and take in their experience during
development.

While [1] outlines a general approach to extend a database system implementation’s
functionality, I had to limit myself to an approach that uses a given system without
modifying it. [1] is a general approach, while the one described in this is restricted to JSON
objects as input to evaluate() .

12/19/22, 5:35 PM evaluate() PostgreSQL Function for Evaluating Stored Expressions (Part 1) | by Christoph Bussler | Dec, 2022 | Medium

https://chbussler.medium.com/evaluate-postgresql-function-for-evaluating-stored-expressions-1846a19943e9 6/6

Given the function evaluate() more use cases open up as outlined in [1] and I might find

the time to write about at least one of those in an upcoming blog.

Reference
[1] Managing Expressions as Data in Relational Database Systems. Aravind Yalamanchi,
Jagannathan Srinivasan, Dieter Gawlick. Proceedings of the 2003 CIDR
Conference. https://www.cidrdb.org/cidr2003/program/p27.pdf

https://www.cidrdb.org/cidr2003/program/p27.pdf

